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Classical and quantum quasi-iz> Heisenberg model with 
competing interactions 

A Pimpinelli, E Rastelli and A Tassi 
Dipartimento di Fisica dell'Universita, 43100 Parma, Italy 

Received 30 March 1989 

Abstract. In this paper we examine the zero-temperature phase diagram and ground-state 
configurations of a Heisenberg Hamiltonian with exchange competition up to third-nearest 
neighbour in ID (linear chain). In the classical limit S -+ CO we find that the ground state is 
ferromagnetic, antiferromagnetic or modulated depending on the interactions. Transitions 
between the various phases are all first order with the exception of a finite portion of 
the boundary between the ferromagnetic and the helical phases, where the transition is 
continuous. We also study the quantum model by means of a perturbative approach 
that evaluates the zero-point-motion energy to order 1/S in the non-collinear phases, thus 
establishing the relative location of the quantum ground-state configurations. However, one 
can evaluate to all orders in 1/S the exact expression of the zero-point motion for vanishing 
helix wavevectors in the vicinity of the second-order ferro-helix classical transition line. 
The result is that a finite part of the ferro-helix classical line is swept away by quantum 
fluctuations and replaced by a first-order transition. The scenario should be realistic at low 
but finite temperature, and should indicate the relevance of quantum effects even on the 
critical behaviour in quasi-io systems with very-low-temperature transitions. 

1. Introduction 

Modulated structures in spin systems are still subjects of intensive research even after 
nearly 30 years of experimental and theoretical studies. Such structures can be suc- 
cessfully modelled by means of Heisenberg Hamiltonians with competing interactions, 
since it is known [ I ]  that exchange competition leads to helical phases in magnetic 
systems. 

The treatment of quantum contributions to the ground-state and excitation energy 
is still an open problem; recently [2] an approach has been worked out that is an 
alternative to the usual evaluation of the zero-point-motion energy to leading order in 
1/S. This approach is feasible on the parts of the ferro-helix boundary line where the 
transition is continuous, and it allows an exact (i.e. to all orders in 1/S) determination 
of the region where the ferromagnetic ground state becomes unstable with respect to 
long-wavelength quantum fluctuations, thus giving way to a first-order transition to a 
non-collinear phase. 

In this work we apply both treatments to the ground states of a third-nearest- 
neighbour Heisenberg (TNNH) model in I D  (linear chain). A word of caution is needed 
here. Since both methods rely on spin waves, one could question their employment 
on a I D  quantum spin model. In fact this model has to be looked at as the limit 
of a 3D arrangement of chains interacting via a weak exchange coupling J', which 
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assures LRO; this coupling is not essential since on the ferro-helix transition line the 
quantities we compute are not divergent in ID. Thus the result we obtain can be viewed 
as providing an upper limit to the quantum effect in the 3D model, with the advantage 
that every calculation is analytical and hence completely under control. With the same 
attitude, previous results have been published [3], concerning the same model but with 
interactions only up to next-nearest neighbour. In that work an open question was left: 
while for S > i the conclusion could be drawn that the transition remains continuous, 
for S = i we could reach no definite answer. The answer to this question is given in 
this paper. 

The plan of the paper is as follows. In $2 we discuss the classical ground state and 
the zero-temperature phase diagram. It is shown to be partitioned in three regions, with 
ferro, antiferro and helical ordering respectively. An unusual feature is the appearance 
of a first-order transition line between the ferro and helical phases. This is not 
seen on either the triangular or the square lattices with just third-nearest-neighbour 
interactions [4] (a first-order transition may occur there introducing fourth-nearest- 
neighbour couplings [5]). The first-order boundary joins a second-order ferro-helix 
line in a tricritical point. Section 3 is devoted to the evaluation of quantum corrections 
to the ground-state energy on the second-order ferro-helix boundary. It is seen that for 
any S-value the tricritical point moves along this boundary in such a way as to reduce 
the extension of the continuous transition line. In $4 the zero-point-motion energy is 
computed to leading 1/S order in the modulated and antiferromagnetic phases. The 
respective values are then compared and the boundaries in the quantum ground state 
are determined. Section 5 contains remarks and conclusions. 

2. Classical ground state 

The Hamiltonian of our model reads 

where 6, and 6‘ are vectors joining site i with its clth neighbours and with its NN 
in the adjacent chains, respectively. Here the NN intrachain J ,  and the interchain J’ 
exchange couplings are positive, while the next-nearest-neighbour (NNN) 5, and the 
third-nearest-neighbour (TNN) 5, couplings can have either sign. If J ,  and/or J ,  are 
negative, the competition between exchange interactions can lead to helical states. On 
the other hand, there is no competition due to J ’ ;  the spins in each chain have identical 
orientations. In order to obtain the classical ground state we let the Hamiltonian depend 
on a variational parameter Q by introducing a locally rotated reference frame, then 
transform from spin operators to Bose operators via a Dyson-Maleev transformation 
[6]. We obtain a bosonic Hamiltonian including terms with up to six operators [7]. 
Here we write just a few terms, the only ones that matter in our computations. We 
take J’ = 0 and the lattice constant equal to 1 
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where 1 denotes k,, 2 denotes k,, etc and, in the small-Q limit, 

E,(Q) = -2J1NS2[1 + j, + j3 - iQ2(1 + 4j2 + 9j3) + &Q4(l + 16j2 + Slj,)] (3) 

with j, = J , / J1  A,  = 8J,Sek, where 

3 1 
2 

f k  = - jm( 1 - COS km). 
m = l  

Here 

j ,  = 1 j 2  = j 2  R = j3 

and 

k, = k, k, = 2k, k3 = 3k,. 

Furthermore, 

B, = -4JlSbkQ2 

where 

(4) 

(7) 

b, = :(cos k, + 4j2 cos k, + 9j3 cos k3). (8) 

V1,,3,4 is the well known Dyson-Maleev [6] interaction potential, that we need only [2] 
for Q = 0 and k ,  = -k, E k and k, = -k, 5 q, 

3 

‘k,q = -4J1S cjm(l - cos km)(l -cos qm). 
m= 1 

(9) 

Minimising E,(Q)  we find the zero-temperature phase diagram shown in figure 1. In 
region F spins are arranged ferromagnetically, that is Q = (O,O,O). Region AF supports 
an intrachain antiferromagnetic ordering, with Q = (O,O,n). Finally, in region H we 
find a modulated structure characterised by a wavevector Q = (O,O, Q) where 

-j, - b; - 3j3(l - 3j3)]’I2 
C O S  Q = 

6j3 

It is apparent that 

(104 
-j, + 1522 - 3j3(1 - 3j3)]1’2 

COS Q = 
6j3 

is another extremum for the classical energy, but it is seen to be always a maximum in 
the helical phase. 

The boundaries between the various phases are given by 

(i) 1-11 

j3 = -1 
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Figure 1. Zero-temperature phase diagram of the ID-TNN Heisenberg model. Full curves 
are the classical (S -+ m) phase boundaries, Tcl being the classical tricritical point. T,l-A is 
the second-order ferro-helix phase transition line. All other transitions are first order. A 
qualitative sketch of &(e) is given for ferromagnetic (F), helix (H), antiferromagnetic (AF) 
configurations. Broken curves are obtained by a first-order calculation in 1/S. The dotted 
curve is conjectured. T, is the tricritical point obtained by a T-matrix calculation. The 
only second-order phase transition surviving quantum fluctuations is the portion Tq-A’ of 
the F-H transition line. Quantum corrections shown in this figure refer to S = 1. 

(ii) 1-111 

(iii) 11-111 

j ,  =--;(I + 4 j 2 )  if - f < j ,  < 2 

2 if j 2  < -3 

The F-H transition is continuous along the curve ( l lb ) ,  while it is first order along the 
curve ( l lc)  where Q jumps discontinuously from zero to a value such that cosQ = 
-(2+3j2)/2j2. Curves (1 lb) and (1 IC) meet at the classical tricritical point T,, = ( - f ,  &), 
On the line j ,  = for j 2  < --:, one has Q = in independently of j2 .  All other transitions 
are first order. On the line ( I ld )  one has cosQ = -(2 - 3j2)/2j2. A is a triple point 
where the three phases coexist. 

Notice that the equation of the line A-T,, is nothing other than the condition for the 
coefficient of Q2 in equation (3)  to vanish; and in fact this is just what is needed for a 
continuous transition to occur, together with the requirement that the coefficient of Q4 
be positive. At the tricritical point T,, both the coefficient of Q2 and that of Q4 vanish, 
while Q6 has a positive coefficient, so that the transition starts being discontinuous 
where the coefficient of Q4 becomes negative. We stress that this is a very simple model 
in which a first-order ferro-helix transition and a tricritical point are present at T = 0, 
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as a result of the competition of interactions; this is not limited to lD, since it is clear 
that interchain exchange has no bearing on ground-state configurations. The study of 
this classical model at finite temperature should prove quite interesting. 

3. Quantum corrections to ground-state energy: T-matrix calculation 

As we said before, the vanishing of e,, the coefficient of Q2 in equation (3), is a 
necessary but not sufficient condition for the continuity of the ferro--helix transition; 
one must require that the coefficient of the following term, e4,  be positive. Now, it has 
been proved possible [2] to compute exactly the contribution of the Hamiltonian (2) 
to these two coefficients and thus to establish their sign. It turns out that e2 has no 
quantum contribution, while e4 is given by [2] 

3 1 1 
12 

e4 = - J , N S 2 -  (1 + 16j2 + Slj,) - 4J,NS (I, + 5 j ,(A-'),,ImIfl) 
m,n=l 

where I,, I,, I, are integrals explicitly given in the Appendix and A is the matrix 

A,,, = 6,fl- (1/2S)juDm,. (13) 
D,, are also integrals given in the Appendix. All integrals are convergent if computed 
on the line 1 + 4j2 + 9j3 = 0 with -$  < j ,  -= 2 and all integrations can be performed 
analytically in ID. It is clear from equation (12) that e4 may change sign in this interval 
and indeed it does. In table 1 we show the values of j, and j 3  at which e4 = 0 for 
various S .  Tq is the quantum tricritical point, that is the classical tricritical point T,, 
shifted by quantum effects. As one could expect, the quantum effect increases as the 
value of S decreases. 

Table 1. Values of j 2  and j3 for which e4 = 0 (T , )  on the F-H phase boundary for selected 
values of S. 

112 -0.25 0 
1 -0.325 0.033 
312 -0.342 0.041 
2 -0.351 0.045 
5/2 -0.358 0.048 
io -0.4 1/15 

We also expect that interchain coupling reduces the extent of the first-order region, 
since it reduces quantum fluctuations, in agreement with what is found in other 2D 
and 3D models [7, 81. It can be seen that for S = i, Tq occurs at j 3  = 0. This is 
the reason why we were not able to establish the order of the transition when we 
considered only NNN interactions [3] ; by chance we had just obtained the tricritical 
point in the model with third-nearest-neighbour interactions. This finding is consistent 
with the result by Hamada et a1 [9] who established that the exact ground state is 
ferromagnetic (degenerate with a resonating valence bond (RVB) state) for S = 4 and 
j, = -:. Since from our computation the instability of the ferromagnetic ground 
state against magnon-magnon interaction, in the presence of competing exchange, is 
apparent, an interesting question arises concerning the stability of the RVB state against 
the introduction of further neighbour exchange couplings. 
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4. Zero-point-motion energy in non-collinear phases 

In this section we report the evaluation of the quantum zero-temperature phase diagram. 
To this end we go back to the Hamiltonian (2) and we compute its ground state for 
arbitrary Q, including the first correction in the 1/S expansion. This gives 

where E ,  is the spin-wave energy spectrum 

and 

S, = 2J,S 1 1 j,(cos Q .  6, - cos k .a,) 

-- 

Since E, is real only for Q = Q,, where Q, is the helix wavevector which minimises the 
classical ground-state energy, we computed E ,  fixing the spin-wave spectrum on the 
classical boundary and letting E, vary. This is correct at the leading order in 1/S since 
the shift of the classical phase boundary is expected to be of order 1/S, so that we 
may use the classical quantities in the zero-point-motion energy, whose leading order 
is 1,'s. The comparison between the energies of the H, AF, F phases is performed by 
extrapolating the zero-point-motion energy evaluated on the corresponding classical 
phase boundaries (see equations ( I  1)). The extrapolation is performed ascribing the 
zero-point-motion energy of a point of the classical phase boundary to all points 
of the parameter space lying on straight lines perpendicular to the classical phase 
boundary within a region of size 1/S. The classical energies of different configurations 
are expanded as functions of 1/S starting from their common value on their classical 
phase boundary, to be consistent with the treatment of the zero-point motion described 
above. 

We now consider the neighbourhood of the F-H transition line described by 

where -1 < x < -:. From the condition 

E: = E: 

we obtain the shift of the H-F transition line. 

- b H )  (22) 
8x3(x + 1)2 

(5x + 2)[16(x + 1)4 + x 2 ( x  + 2)2] 
a =  

-6H) (23) 
2x4(x + 2) x2 + 4(x + 1)2 

b =  
(5x + 2)[16(x + 1)4 + x2(x + 2)2]  ( 4(x + 1) 
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where 

3x - 2 1 ( 19x3 - 46x2 + 36x - 8 
cos k - - 

2x 4x 
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19x3 + 46x2 + 36x + 8 
' H = ;  j n d k l L  x + l  (cosk+ -)/(1 2x -cosk)( 4x 

1 

1/2 
cos2k) . (3x + 2)(3x2 + 6x + 2) 

- (2x + 1)(2 + x) cos k - 
X 

Notice that the present approach does not suggest any shift of T,,. This is a clear 
limitation of the 1 / S  approximation, since the exact T-matrix calculation shows that 
T,, is replaced by Tq. For this reason we interpolate between the 1/S and the T-matrix 
result in the neighbourhood of T,, as is shown in figure 1, where the phase diagram 
for S = 1 is given. 

Consider now the neighbourhood of the H-AF transition line given by 

XL a + -  
J 3 = - -  s 

b 
j , = x + -  

S 
ax(2 - x) + 4b(x - 1)2 = 0 

where 1 < x < 2. From the condition 

we have 

8X3(X - 1)2 
a =  ('H - 'AF) (5x - 2)[16(x - 1)4 + x2(2 - x ) ~ ]  

2x4(2 - x) 
b = -  ('€I - 'AF) (5x - 2)[16(x - 1)4 + x2(2 - x)'] 

112 
cos2 k) 

(3x - 2)(3x2 - 6x + 2) + ( 2 ~  - 1)(2 - X) COS k - 
X 

1 (3x - 2)2(3x - 4) + 4x3 
~ X ( X  - 1) 'AF = 71 

Finally we give the AF-F transition line. We have to solve the equation 

EgF = E: 

which leads to the new AF-F boundary 

1 
j3 = -1 + - ( ' Ln dk sin k [(j2 + 2 cos2 k)2 - Q2 + 2)2 cos' k] 2 s  J 2 -  71 

(30) 

(33) 

(34) 
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for j2 > 2. Equation (34) may be expressed in terms of elliptic integral as follows: 

j,=-1+8(1- 2 s  4 
371 - [ci,2/4 + - 

where 

E ( k )  = s,”-’ da d l  - k2  sin2 a 

and 

are the complete elliptic integrals of the second and first kinds, respectively. For j, -+ 2 
equation (35) gives 

while for j2 -+ cc one obtains 

The quantum scenario shown in figure 1 for S = 1 is expected to undergo minor 
changes in the 3D model of weakly interacting chains. This is an interesting feature 
of our result because the general expectation is that quantum effects have minor 
relevance on the critical behaviour. A large part of the renormalisation group studies 
of critical phenomena are based on a classical evaluatior, of the Landau-Ginzburg- 
Wilson free energy: indeed, the observables are treated as commuting quantities in 
the e-expansion approach (see for instance [lo]). In our model we find that quantum 
effects strongly affect the zero-temperature phase diagram, at least in some regions of 
the parameter space. This could suggest that a classical treatment of the spin variables 
in a renormalisation group analysis could neglect interesting features of quantum 
systems. This point deserves further theoretical investigation. 

5. Conclusions 

We have found the zero-temperature phase diagram of a classical Heisenberg model in 
which competing interactions up to third-nearest neighbour along one spatial direction 
are assumed. The diagram is characterised by two collinear (F and AF) and one 
modulated phase (H). All phase boundaries are first order except a finite portion of 
the H-F transition line which is second order. Then we have studied the corresponding 
quantum phase diagram in the ID  limit employing spin waves. We have computed the 
energy of the various ground-state configurations to leading order in 1/S, in order to 
obtain the phase boundaries with quantum corrections. Finally we have summed to 
all orders in 1/S the perturbative series for the coefficients of Q2 and Q4 in the small- 
Q development of the ground-state energy along the F-H continuous transition line. 
Such computations allowed us to conclude that long-wavelength quantum fluctuations 
induced a first-order character in a portion of this line, and the extent of this portion 
depends on the value of S ,  being maximal for small S .  
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Appendix 

In this Appendix we give the explicit form of the integrals appearing in equations (12) 
and (13). The integrals to be computed are 

where 

1 (1 - COS k,)(l - COS k,) D,, = D,, = - 
N k  ' k  

m = l  

We have 

1 I { 5625j: + 233 1 j: - 
- 8192j: 

605j3 + 25 

From the sum rules 
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with j 2  = - i ( l  + 9J3), we get the remaining integrals. The coefficient of the Q4 term 
(12) becomes 

e4 = ~ J , N S ~  1 -15j,) - 2 ( I ~  + '")I 
S 2s d 

where 

(-415) 

One can easily see that for j ,  -+ 0 the previous equations reduce to those of [3], as 
expected. 
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